Space Glass
You make glass by mixing together some materials like sand, limestone and soda, heat them above 2000o F, then cool the incandescent liquid carefully so that crystals cannot form.
Craftsmen on Earth have followed this basic recipe for millennia. It
works.
But it works even better in space.
In microgravity, though, you don't need a container. In Day's initial experiments, the melt--a molten droplet about 1/4 inch in diameter--was held in place inside a hot furnace simply by the pressure of sound waves emitted by an acoustic levitator.
Containerless processing produces a better glass.
To his surprise, though, the glass was of even higher quality than theory had predicted.
The window glass that we're so familiar with is made mostly of silica--a compound of silicon and oxygen. It's essentially melted sand.But in theory, a melt of any chemical composition can produce a glass as long as the melt can be cooled quickly enough that the atoms don't have time to hook themselves up into patterns, or crystals.
In Earth-orbit, it turns out, these molten liquids don't crystallize as easily as they do on Earth. It's easier for glass to form. So not only can you make glass that's less contaminated, you can also form it from a wider variety of melts.
Glass made from other chemical compositions offers a panoply of
unexpected properties. "Bioactive glasses" can be used to repair human
bones. These glasses eventually dissolve when their work is done.
Glass made of metal can be remarkably strong and corrosion-resistant.
And you don't need to machine it into the precise, intricate shapes
needed, say, for a motor. You can just mold or cast it.
Right: Steel balls bounce on flat plates of titanium alloy, metallic glass, and stainless steel. The ball bouncing on metallic glass keep going for a remarkably long time. [more]
Also intriguing to space researchers is fluoride glass. A blend of zirconium, barium, lanthanum, sodium and aluminum, this type of glass (also known as "ZBLAN") is a hundred times more transparent than silica-based glass. It would be exceptional for fiber optics.
A fluoride fiber would be so transparent, says Day, that light shone into one end, say, in New York City, could be seen at the other end as far away as Paris. With silicon glass fibers, the light signal degrades along the way.
Unfortunately, fluoride glass fibers are very difficult to produce on Earth. The melts tend to crystallize before glass can form.
Below: The surfaces of ZBLAN fibers formed in near-weightlessness (upper panel) and in normal Earth-gravity (lower panel). [more]
The
reason, says Day, is that gravity causes convection or mixing in a
melt. In effect, gravity "stirs" it, and, in a process known as shear
thinning, the melt becomes more fluid. This same process works in
peanut butter: the faster you stir it, the more easily it moves.
In melts that are more fluid, like those stirred by gravity, the atoms move rapidly, so they can get into geometric arrangements more quickly. In thicker, more viscous melts, the atoms move more slowly. It's harder for regular patterns to form. It's more likely that the melt will produce a glass.
In microgravity, Day believes, melts may be more viscous than they are on Earth.
While this theory has not yet been confirmed, some experimental results suggest that it is correct. NASA researcher Dennis Tucker worked with fluoride melts on the KC-135, a plane that provides short bursts of near zero-gravity interspersed with periods of high gravity.
"He did some glass-melting experiments, trying to pull thin fibers out of melts," recounts Day. "During the low-gravity portion of the plane's flight, when g was almost zero, the fibers came out with no trouble. But during the double-gravity portion of the plane's flight, the fiber that he was pulling totally crystallized."
That result, says Day, could be explained by shear thinning. "A melt in low gravity doesn't experience much shear. But as you increase g, there'll be more and more movement in the melt." Shear stresses increase. The effective viscosity of the melt decreases. Crystallization becomes more likely.
Right:
(left panel) a defect-free ZBLAN fiber pulled during a low-g arc aboard
the KC-135; (right panel) a crystallized fiber pulled from the same
apparatus under 1-g. [more]
Day is currently planning his next experiment in space--onboard the International Space Station--which he hopes will confirm his ideas. He'll be melting and cooling identical glass samples in the same way on Earth and in microgravity. Then he'll count the number of crystals that appear in each sample. If shear-thinning exists, he says, there will be fewer crystals in the space-melted samples than in the ones produced on Earth.
Eventually, Day hopes to take these lessons learned from space and apply them to glass production on the ground. Metallic glasses. Bioactive glasses. Super-clear fiber optics. The possible applications go on and on.... which makes the value of this research crystal clear.
http://science.nasa.gov/science-news/science-at-nasa/2003/14apr_zeroglass/
NASA's Office of Biological and Physical Research (OBPR) supports studies like Day's for the benefit of humans in space and on Earth
The "Glass Flows" Myth (Glassnotes.com) --learn more about the basics of glass.
ZBLAN continues to show promise (Science@NASA) Thin fibers of an exotic glass called ZBLAN are clearer when made in near weightlessness than on Earth under gravity's effects. [more]
Delbert E. Day -- (University of Missouri) home page
Fighting Cancer with Radioactive Glass Microspheres (National Engineers Week) Tiny glass spheres are proving an effective way of safely delivering large doses of radiation to cancerous tumors -- researchers see multiple medical possibilities
The Bare Bones of Bioactive Glass (Microgravity News) researchers are learning how to use glass beads to improve bone growth.
Microgravity Fiber-Pulling Apparatus (NASA) Thber-processing method provides a way to produce optical fiber composed of glass systems in low gravity.
Materials
Science Overview - Metals and Alloys (Science@NASA)